Is gambling an addictive pathology that causes changes in the brain and requires treatment? Or is it merely a compulsive behaviour? This question has long kept the medical world confused.
Traditionally, it was thought that addiction could happen only when a person is dependent on some physically existing substance. However, now this traditional way of thinking is changing. The brain seems to have a weakness of getting trapped by either a substance or experience that brings a reward, be it drugs, sex, eating, or gambling. Like addiction to substances, addiction to gambling can affect a person of any background, education level, and level of income. Many celebrities are known to be overindulging in gambling. The list includes Tiger Woods, Ben Affleck, and Pamela Anderson, to name just a few.
Once researchers agreed that pathological gambling exists, the question as to whether it is more like drug addiction or similar to other obsessive-compulsive disorders remained unanswered. Modern research seems to support the idea of higher similarity with substance addiction than with obsessive-compulsive disorder. However, it is entirely possible that pathological gambling is a heterogeneous disorder and thus shares the components of both conditions. Hence, in some people it may be more like an obsessive-compulsion, while in others it is similar to substance dependence.
Functional MRI studies seem to support the view that gambling addiction is more like a substance-abuse disorder. Therefore, in the Diagnostic and Statistical Manual of Mental Disorders (5th edition; DSM-5) is has been classified as a behavioral addiction. It does not necessarily mean that other types of this disorder do not exist, as this condition is still not fully understood from a medical point of view.
Why should gambling be considered an addiction?
Perhaps due to the absence of any physical substance, addition to experiences like gambling is more challenging to recognize until considerable harm is done. A large number of people addicted to gambling fail to accept this fact. Yet, it is no secret that gambling addiction can ruin life as effectively as substance addiction.
The person involved in gambling gets ‘high’ and finds it difficult to control or limit gambling, which is also characteristic of drugs addiction. Moreover, there are negative emotions similar to withdrawal syndrome when a person is deprived of the gambling activity. And finally, even the medications used to treat substance addiction have shown to be efficient in the management of gambling disorder.
Neural changes in gambling addiction
Any addiction is caused by the combination of several factors such as genetic causes, environmental issues, and social influences and problems.
Mesolimbic and mesocortical dopaminergic pathways are central to motivation, desire, and perception of pleasure. Dysregulation in the mesolimbic pathway (often referred to as reward pathway) is known to play a vital role in the development of addiction.
Research on pathological gambling is still ongoing; this phenomenon is still not fully understood from a neurobiological point of view. It is clear that in pathological gambling multiple neurotransmitter systems (including dopamine, serotonin, norepinephrine, opioid, and glutamate) and various brain regions are implicated (including the amygdala, nucleus accumbens, prefrontal cortex, and insula).
Addiction to gambling is the result of a pathological importance being attached to the activity. High level gambling and substance addicts give excessive motivational significance to the addictive activity. Glutamatergic projections from the prefrontal cortex to the accumbens is thought to be the neural pathway involved in provoking gambling seeking behavior. This anatomical path is found to play a role in most forms of behavior dysregulation and addiction. The prefrontal accumbens pathway is vital to providing motivational or reward salience and goal-directed behavior.
A few years ago, fMRI was used to compare the brain activity of people occasionally involved in gambling against those known to be suffering from pathological gambling. The scans demonstrated a significant difference in blood-oxygen-level dependent (BOLD) signals between the two groups in the superior temporal regions, inferior frontal, and thalamic region. Those pathologically addicted to gambling showed a distinct frontoparietal activation pattern triggered by gambling-related cues, which is known to play a role in the addiction memory network.
Treatment of pathological gambling
Though the prevalence of pathological gambling is much higher than many psychiatric disorders like schizophrenia, there is a lack of studies and trials aimed at finding the appropriate treatment for this problem. Still, there is a small number of studies that seem to favor the effectiveness of pharmacological treatment.
Drugs that have shown the ability to modulate dopaminergic transmission in the mesolimbic pathways, like opioid-receptor antagonists (e.g., naltrexone) have demonstrated effectiveness in trials. Antidepressants and mood stabilizers are the groups of drugs that may prove to be effective in overcoming gambling addiction.
Various clinical investigations have also examined the effectiveness of non-pharmacological treatments. It has been demonstrated that cognitive-behavioural therapy (CBT) could be one such option. Some studies have also investigated the usefulness of video conferencing for ongoing supervision, and the use of congruence couple therapy and therapies that have a holistic approach to the problem.
To sum up, the latest neurobiology studies confirm that gambling addiction is similar to substance addictions. It may also have serious implications for the person involved, yet little is known regarding how to effectively treat this problem.
References
Blanco, C., Moreyra, P., Nunes, E. V., Sáiz-Ruiz, J., & Ibáñez, A. (2001). Pathological gambling: addiction or compulsion? Seminars in Clinical Neuropsychiatry, 6(3), 167–176. doi:10.1053/scnp.2001.22921
Grant, J. E., & Kim, S. W. (2006). Medication Management of Pathological Gambling. Minnesota Medicine, 89(9), 44–48.
Holden, C. (2001). “Behavioral” Addictions: Do They Exist? Science, 294(5544), 980–982. doi:10.1126/science.294.5544.980
Kalivas, P. W., & Volkow, N. D. (2005). The Neural Basis of Addiction: A Pathology of Motivation and Choice. American Journal of Psychiatry, 162(8), 1403–1413. doi:10.1176/appi.ajp.162.8.1403
Leung, K. S., & Cottler, L. B. (2009). Treatment of pathological gambling. Current Opinion in Psychiatry, 22(1). doi:10.1097/YCO.0b013e32831575d9
Miedl, S. F., Fehr, T., Meyer, G., & Herrmann, M. (2010). Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Research: Neuroimaging, 181(3), 165–173. doi:10.1016/j.pscychresns.2009.11.008
Potenza, M. N. (2013). Neurobiology of gambling behaviors. Current Opinion in Neurobiology, 23(4), 660–667. doi:10.1016/j.conb.2013.03.004
Potenza, M. N. (2014). The neural bases of cognitive processes in gambling disorder. Trends in Cognitive Sciences, 18(8), 429–438. doi:10.1016/j.tics.2014.03.007
Urban, N. B. L., & Martinez, D. (2012). Neurobiology of Addiction:Insight from Neurochemical Imaging. Psychiatric Clinics, 35(2), 521–541. doi:10.1016/j.psc.2012.03.011
Image via whekevi/Pixabay.
Source: Brain Blogger